GREPhysics.NET
GR | # Login | Register
   
  GR9277 #14
Problem
GREPhysics.NET Official Solution    Alternate Solutions
\prob{14}
The total energy of a blackbody radiation source is collected for one minute and used to heat water. The temperature of the water increases from 20.0 degrees Celsius to 20.5 degrees Celsius. If the absolute temperature of the blackbody were doubled and the experiment repeated, which of the following statements would be most nearly correct?

  1. The temperature of the water would increase from 20 degrees Celsius to a final temperature of 21 degrees Celsius.
  2. The temperature of the water would increase from 20 degrees Celsius to a final temperature of 24 degrees Celsius.
  3. The temperature of the water would increase from 20 degrees Celsius to a final temperature of 28 degrees Celsius.
  4. The temperature of the water would increase from 20 degrees Celsius to a final temperature of 36 degrees Celsius.
  5. The water would boil within the one-minute time period

Statistical Mechanics}Blackbody Radiation Formula

Recall

where P is the power and u the energy and T the temperature.

So, initially, the blackbody radiation emits P_1=kT^4. When its temperature is doubled, it emits P_2=k(2T)^4=16kT^4.

Recall that water heats according to Q=mc\Delta T= \kappa \Delta T. So, initially, the heat gain in the water is Q_1=\kappa (0.5^\circ). Finally, Q_2=\kappa x, where x is the unknown change in temperature.

Conservation of energy in each step requires that kT^4t=\kappa/2 and 16kT^4t=\kappa x, i.e., that P_i t = Q_i. Divide the two to get \frac{1}{16}=\frac{2}{x}\Rightarrow x=\Delta T = 8^\circ. Assuming the experiment is repeated from the same initial temperature, this would bring the initial 20^\circ to 28^\circ, as in choice (C).

See below for user comments and alternate solutions! See below for user comments and alternate solutions!
Alternate Solutions
There are no Alternate Solutions for this problem. Be the first to post one!
Comments
mpdude8
2012-04-19 18:15:51
Whenever I see the word "blackbody", I think T^4. It seems like they always ask a question to see if you know the correct exponent in the blackbody-temperature relationship.NEC
istezamer
2009-11-06 07:32:28
Of course we must start by knowing the fundamental equation that the Energy is proportional to Temperature^4.. so a double in temperature would increase the energy 16 folds!!
Now if we take the initial energy to be one unit...
1 unit increase the temperature 0.5 degrees
16 unit would increase the temperature 16 times 0.5 which is 8 degrees!! SO the correct choice is (C).
pam d
2011-09-28 09:56:39
Careful with the terminology, you should say that "radiative power" is proportional to temperature raised to the fourth power. Since the amount of time the experiment is run does not change, we have in this specific instance that the amount of energy transferred is proportional to temperature to the fourth power.
NEC
spacebabe47
2006-10-31 19:38:13
Dividing the two equations will actually get

1/16=.5/x

1/16=1/2x

x=8
Typo Alert!
Andresito
2006-03-24 19:20:59
In the expression P = u*t

Power = energy/time

Thus,

P = u/t

and this is consistent with Q = P*t
Typo Alert!

Post A Comment!
You are replying to:
Whenever I see the word "blackbody", I think T^4. It seems like they always ask a question to see if you know the correct exponent in the blackbody-temperature relationship.

Username:
Password:
Click here to register.
This comment is best classified as a: (mouseover)
 
Mouseover the respective type above for an explanation of each type.

Bare Basic LaTeX Rosetta Stone

LaTeX syntax supported through dollar sign wrappers $, ex., $\alpha^2_0$ produces .
type this... to get...
$\int_0^\infty$
$\partial$
$\Rightarrow$
$\ddot{x},\dot{x}$
$\sqrt{z}$
$\langle my \rangle$
$\left( abacadabra \right)_{me}$
$\vec{E}$
$\frac{a}{b}$
 
The Sidebar Chatbox...
Scroll to see it, or resize your browser to ignore it...